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ABSTRACT

In this article, we present evidence of a distinct class of extreme events that occur during the transient chaotic state within network mod-
eling using the Brusselator with a mutually coupled star network. We analyze the phenomenon of transient extreme events in the network
by focusing on the lifetimes of chaotic states. These events are identified through the finite-time Lyapunov exponent and quantified using
threshold and statistical methods, including the probability distribution function (PDF), generalized extreme value (GEV) distribution, and
return period plots. We also evaluate the transitions of these extreme events by examining the average synchronization error and the system’s
energy function. Our findings, validated across networks of various sizes, demonstrate consistent patterns and behaviors, contributing to a
deeper understanding of transient extreme events in complex networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0232021

The phenomenon of transient chaos has been extensively
researched across diverse domains, including hydrodynamics,
ecology, economics, coupled electronic circuits, electrophysiol-
ogy, neural networks, and power grids. Additionally, the occur-
rence of extreme events (EEs) in these fields has demonstrated
profound impacts, leading to a crucial question: Do extreme
events emerge during a transient chaotic state in complex net-
works? This underscores the importance of investigating the
EE phenomenon within transient chaotic systems. However, the
precise identification and characterization of transient extreme
events (TEEs) have not been addressed in the existing liter-
ature. In this article, we identify extreme events that emerge
during the transient state from both a dynamical system and
network perspective. This study provides the first evidence of
transient extreme events within network and mathematical mod-
eling, offering valuable insights into real-world occurrences.
Here, we investigate the emergence of typical extreme events
and transient extreme events within a mutually coupled star net-
work of the Brusselator model. The identification of TEEs was

accomplished using the finite-time Lyapunov exponent and sta-
tistical methods, which are employed to assess rare events. Addi-
tionally, we investigated the transitions of EEs by evaluating the
average synchronization error and the system’s energy, which
quantifies the degree of coherence among the oscillators in the
network. To validate the robustness and generalizability of our
results, we expanded our study to networks of varying sizes,
consistently identifying similar patterns and phenomena. This
detailed analysis not only deepens our comprehension of TEEs
but also opens up possible potential applications across various
scientific and engineering fields, including enhancing the relia-
bility of mathematical models and forecasting extreme events.

I. INTRODUCTION

In recent years, there has been a noticeable increase in atten-
tion toward investigating extreme events, which are occurrences
in dynamical systems that happen suddenly and exhibit unusual
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dynamical phenomena. Extreme events phenomena are extensively
studied within various isolated dynamical systems,1,2 providing crit-
ical insights into their underlying mechanisms. However, real-world
scenarios often involve dynamical systems that are not isolated
but are components of larger, interconnected networks. Studying
extreme events in the context of networks is crucial for under-
standing the occurrence and impact of extreme events in both
natural systems, such as ecological networks,3 neuron networks,4

and man-made systems.5,6 Hence, the extreme events phenomenon
is observed across various types of network models, including
static networks,7 random walks on networks,8,9 scale-free networks,10

multilayer, interdependent complex networks,11 and time-varying
networks.12

Therefore, a wide range of natural and man-made phenom-
ena are studied in scale-free topology,13,14 and the star network
motif, representing scale-free networks, consists of a central hub
node connected to several peripheral nodes, and star network makes
it an ideal model for understanding the dynamics of scale-free
networks. Furthermore, numerous intriguing dynamical behaviors
such as chimera states,15 remote synchronization,16 and explosive
synchronization17 have been demonstrated regarding the star net-
work motifs in phase oscillators,16 the spread of an epidemic18 and
this network found within neural networks19 that play vital roles
in both cognitive processes20 and sensory functions.21 However, the
phenomenon of extreme events has not yet been studied in this
network.

Moreover, prior research has shown that extreme events
emerge within chaotic and nonchaotic systems22 in isolated, cou-
pled, or networked dynamical systems. The interesting question
arises: is the behavior of the extreme events induced during the
transient state, and if so, how does it manifest in the asymptotic
state? In the past, transient chaos has been extensively studied in
various fields, such as hydrodynamics,23 ecology,24 economics,25 cou-
pled electronic circuits,26 electrophysiology,27 neural networks,28 and
power grids.29 Similarly, significant impacts of extreme events30 have
been observed in these same fields. However, while these phenom-
ena have been explored independently, this underscores the impor-
tance of investigating the EE phenomenon within transient chaotic
systems. Additionally, transient chaos exhibits over very long iter-
ations of the transient period31,32 and extreme transient behaviors,
where the system’s transient states become extremely prolonged
and occur spontaneously.33 This makes it particularly interesting
to investigate the behavior of extreme events in the transient state
of a system, which is responsible for the system’s asymptotic state.
Hence, we classified the extreme events in the system’s transient
state as a special class of extreme events, which we denote as
transient extreme events (TEEs).

Besides, the first experimental demonstrations of chaotic
behavior in chemical oscillators were observed in the Belousov–
Zhabotinsky (BZ) reaction.34 Since then, the BZ reaction has been
extensively studied in isolated, coupled, and network systems, show-
casing a wide range of nonlinear phenomena, including Turing pat-
terns, waves, clusters, and chaos.35,36 However, investigations into BZ
reactions in star network configurations remain limited, and experi-
mental studies in these networks37 have created significant interest
in star network configurations. In the context of chemical oscil-
lators, we recently investigated extreme events in the Brusselator

model38 influenced by an external periodic force for the first time.
Motivated by the previous research on star network configurations
of the Belousov–Zhabotinsky reaction, this article explores extreme
events and transient extreme events (TEEs) using the theoretical
Brusselator model in a star network configuration.

This article is organized as follows: Sec. II describes the mathe-
matical model. Section III provides the numerical analysis, covering
transient lifetime , generalized extreme value distribution, average
synchronization error, and the system’s energy function. Section IV
discusses the significance and potential applications of this study.
Finally, Sec. V presents the conclusions.

II. MODEL DESCRIPTION

We consider a coupled Brusselator oscillator arranged in a star
network topology as defined by the N × N connectivity matrix Anm,

Anm =

{

1 if n = 1 or m = 1 and (n, m) 6= (1, 1),

0 otherwise,

and where each oscillator (n = 2, . . . , N) in the network is coupled
to the central hub oscillator (n = 1) as displayed in Fig. 1 through
the cross-feedback, which is symmetric owing to bidirectional cou-
plings. The governing equations are provided by

ẋn = a − bxn − xn + x2
nyn,

ẏn = bxn − x2
nyn +

ε

dn

N
∑

m=1

Anm(xm − xn), (1)

where n = 1, 2, . . . , N. The system state variables are x and y, which
represent concentrations of autocatalysts, while a and b are con-
stant system parameters representing concentrations of reactants
and ε represents the global chemical coupling strength. dn = (N −

1, 1, 1, . . . , 1
︸ ︷︷ ︸

N−1 times

) represents the in-degree of node n, which is used for

normalizing the input toward nodes. The equilibrium points for the
system equation (1) are obtained by setting the derivatives of x and
y with respect to time equal to zero. Thus, the system has only one
equilibrium point in each oscillator, which is (xn0 , yn0) = (a, b/a).
The characteristic eigenvalue equations derived for the equilibrium
point of an N oscillator are

λ1,...,2N =
−(a2 − b + 1) ±

√

(a2 − b + 1)2
− 4a2(α ε + 1)

2
,

where









λ1,2 for α = 0,

λ3,4 for α = 2,

λ5,...,2N for α = 1.

Hence, the equilibrium points stability depends on the sys-
tem parameters of a and b. If b > (a2 + 1), the equilibrium point
is unstable. If b < (a2 + 1), it is stable. When b = (a2 + 1), it can be
a center or an ellipticpoint, showing oscillatory behavior.

III. NUMERICAL RESULTS

Our study of the proposed network system (1) began with
an analysis of its dynamics using a bifurcation diagram and
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FIG. 1. Schematic view of a star network composed of N nodes. The central hub
is n = 1 in a red solid circle and the peripheral nodes are n = 2, . . . ,N in blue
solid circles.

its corresponding Lyapunov spectrum of the central hub with
varying coupling strength (ε) within the range of ε ∈ (0, 1). Here,
for convenience in the present study, we contemplate a system con-
sisting of a total of N = 6 nodes for an oscillatory network, with
other system parameters being constant as a = 0.21 and b = 1.061.
For all numerical analyses, the initial conditions for the oscillators
in the network were set as (xi(0), yi(0)) = (0.01, 0.01) if i is odd,
(0.02, 0.02) if i is even. The system demonstrates distinct complex
dynamics under varying initial conditions, which will be discussed
in Sec. III B. A bifurcation diagram is computed for the transient
and asymptotic states with a step size of 0.01. The transient state
is depicted in Fig. 2(a) in blue color dots, calculated for the iter-
ations of T = 2 × 104–2 × 105 time units. The asymptotic state is
depicted in Fig. 2(a) in red color dots, calculated for the itera-
tions of T = 2 × 105–7 × 105 time units. Our analysis revealed that
the network demonstrates periodic behavior in both transient and
asymptotic states at weak coupling.

However, at coupling strength ε = 0.16, a sudden expansion
occurs in the amplitude of the network, resulting in an extreme
events within both system states. This phenomenon persists until
the coupling strength reaches ε = 0.605 in the asymptotic state, at
this point, the system returns to a periodic state due to synchroniza-
tion across the network induced by strong coupling. This transition
from a chaotic state to a completely synchronized state takes a pro-
longed time to settle, inducing transient chaos with extreme events
embedded within systems. The system exhibits extreme events only
in the transient state; this events region is depicted as a rectangu-
lar box in Fig. 2(a) from ε = 0.483 to 0.605. We named this new
phenomenon as transient extreme events (TEEs), which is the sys-
tem that exhibits the extreme events occurrence within a transient
chaotic state. Section III A explains this new phenomenon using
relevant numerical and statistical measures.

To examine the typical extreme events behavior in our net-
work, the numerically obtained time series is depicted in Fig. 3.

FIG. 2. The panel shows (a) the bifurcation diagram of the central hub xh, with
the transient state depicted as blue dots and the asymptotic state as red dots.
(b) displays the Lyapunov exponent of the system central hub.

Throughout the entire iteration, the system parameters are fixed
as given above, and the global coupling strength is set to ε =

0.1657; hence, the system shows chaotic behavior, and its trajectory
spontaneously exhibits extreme events (rare events). To distinguish
extreme events from normal events, a threshold height (Hs) is deter-
mined using a statistical approach that identifies significant devia-
tions from the mean value of the system’s state variable. Here, Hs

is calculated as Hs = 〈xmax〉 + mσxmax , where 〈xmax〉 represents the
mean of the peak state variable, σxmax is the standard deviation of
xmax, and m is an integer specific to the system. To validate the exis-
tence of EEs, we plotted the critical threshold (Hs = 1.3152) in the
time series (xh(t)) as a dashed horizontal line for m = 8, as illus-
trated in Fig. 3(a). This abrupt expansion of the network is classified
as an extreme events. To confirm that the system is in an asymp-
totic state,39 very long-time iterations of T = 1 × 108 were taken
to allow the system to evolve. To confirm the presence of extreme
events in the proposed model, we have plotted the probability dis-
tribution function for the state variable xh(t) of the central hub. We
considered a long time span, running the system for 2 × 108 time
units and allowing it to evolve through transient states with constant
parameters as used previously.
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FIG. 3. Numerically computed (a) time evolution of typical extreme events of the state variable xh(t) with the threshold (Hs = 1.3152) marked as a horizontal dashed line
for m = 8, and (b) the corresponding probability distribution function (PDF) with the threshold marked as a vertical dashed line.

Figure 3(b) shows a continuously heavy-tailed distribution,
surpassing the threshold indicated by the vertical dotted black line.
This indicates the occurrence of extreme events and confirms the
low probability of large-amplitude events occurring beyond the Hs

mark, which is calculated for m = 8 using the respective probability
distribution function data of ε = 0.1657 to confirm the presence of
the typical extreme events in the network.

A. Transient extreme events

To study the phenomenon of transient extreme events in the
proposed network Eq. (1), we present our primary findings from
the numerically obtained time series of the central hub (xh(t)), as
shown in Fig. 4. For the global coupling strength ε = 0.6, the system
exhibits transient chaos, displaying chaotic behavior for long-time
iterations of 1.4388 × 105 before settling into a periodic state. This
transient chaotic state exhibits extreme events in every oscillator of
the network and these events are characterized by threshold height
(Hs). We observed that chaotic state behavior remains confined to
the transient state, with the EE behavior showing a sudden expan-
sion in phase space, represented in blue color in Fig. 4(a). In the
asymptotic state, the system settles into a periodic state, represented
in red color as shown in the subplot of Fig. 4(a). This transient
chaotic behavior is confined to a specific temporal region, with
the EE phenomenon characterized by rare and extreme amplitude
bursts, depicted in blue color in Fig. 4(b). After a transient state,
the system settles into a periodic state (period 10 limit cycle), rep-
resented in Fig. 4(b) with a red color. For the case of transient
extreme events with ε = 0.6, the probability distribution function
is depicted in Fig. 4(c), which shows a continuously heavy-tailed
distribution that exceeds the threshold value indicated by the ver-
tical dotted black line. This demonstrates the occurrence of extreme
events during the transient state, depicted in blue color, beyond
the Hs threshold, confirming the low probability of large-amplitude
events. Additionally, distribution indicates that the periodic asymp-
totic state is confined within a bounded region depicted in Fig. 4(c)
in red color.

To confirm the transition of the system from a chaotic state to a
periodic state, we utilize the finite-time Lyapunov exponent (FTLE),

which quantifies the amount of stretching or folding experienced
by a trajectory along a specific direction over a finite time interval.
This is illustrated in Fig. 4(d), which shows the maximum Lyapunov
exponent for each oscillator in the system. During the extended tran-
sient state, the system demonstrates chaotic behavior, as indicated by
the positive values of the Lyapunov exponent. These positive values
confirm the chaotic behavior in the transient state. Subsequently, as
the system evolves, it transitions into a periodic state. This transition
is validated by all the Lyapunov exponent becoming non-positive at
t ∼ 1.43 × 105, signifying that the system has settled into a stable
periodic behavior.

B. Transient lifetime

To validate the transient lifetime and the escape rate from the
proposed network, a finite-time Lyapunov exponent analysis was
performed to differentiate the transient and asymptotic behaviors of
the system. Specifically, we considered finite-time largest Lyapunov
exponent λmax ≤ 0 to denote periodic behavior and other positive
values of λmax as indicating chaotic state. In the transient chaotic
regime, the distribution of transient chaos is dependent on the ini-
tial conditions of the system. The system parameters are the same
as the TEE values and the hub oscillator initial conditions xh(0) are
varied in the range of 0–2.5 and we have plotted the phase diagram
in the (xh(0)-t) plane, as illustrated in Fig. 5. For these initial con-
ditions, the finite-time Lyapunov exponents were calculated using a
total of 5 × 105 iterations. In Fig. 5, the regions exhibiting chaotic
behavior are shown in the gray color region, while regions showing
periodic behaviors are denoted by the red color region. The lifetime
of transient chaos is measured as the duration from the initial time
to the point when the largest Lyapunov exponent becomes negative.
This process is repeated for a range of initial conditions of the cen-
tral hub between 0 and 2.5. The mean value of these measurements
is determined to be t ∼ 146 351, representing the average transient
lifetime.

C. Generalized extreme value (GEV) distribution

To study the probability distribution of the network across the
coupling (ε), we calculated the generalized extreme value (GEV)
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FIG. 4. Panel shows (a) the phase portrait in the (xh − yh) plane, with the asymptotic periodic state depicted in the subplot. (b) The time evolution of the central hub variable
xh(t), with transient states shown in blue color with a subplot labeled “chaos” and asymptotic behavior in red color with a subplot labeled “periodic.” The TEEs threshold Hs

is indicated by a dashed black line. (c) The probability distribution function (PDF), with the asymptotic periodic distribution depicted in the subplot and (d) the corresponding
finite-time Lyapunov exponent (FTLE) of the time series (xh(t)) for ε = 0.6.

distribution,40 a primary statistical model in extreme value theory.41

GEV allowed us to determine the shape of the tail, where extreme
events occur. GEV distribution is widely used across different disci-
plines, such as engineering, climatology, finance, and insurance.42,43

This distribution offers a comprehensive framework to characterize
these events, which is crucial for understanding extreme phenom-
ena. From the bifurcation diagram in Fig. 2, we deduced that the
network exhibits periodic behavior at weak and strong coupling (ε),
as well as periodic intermittency. Consequently, these periodic states
follow a discrete distribution. Therefore, we excluded these regions
and performed calculations only for the states that fit the generalized
extreme value distribution.

The cumulative distribution function of the generalized
extreme value (GEV) distribution is calculated by

F(x; µ, ρ, ξ) = exp

{

−

[

1 + ξ

(
x − µ

ρ

)]−1/ξ
}

,

where µ is the location parameter, ρ is the scale parameter, and
ξ is the shape parameter. The shape of the distribution depends
on the value of ξ . When ξ is negative, extreme events follow a
Weibull distribution, and the tail of the distribution is bounded.
Conversely, for positive ξ values, extreme events exhibit a Fréchet

distribution, displaying a heavy-tailed distribution. In cases where
ξ equals zero, the extreme value distribution mirrors a Gumbel
distribution, showcasing an exponential decay in the tail of the
distribution.

By examining the evolution of the sign of ξ with coupling
strength (ε), as shown in Fig. 6, in this present study, we observe
that the network (1) follows a Fréchet distribution (ξ > 0), indi-
cating a heavy-tailed distribution. This implies that the probability
of observing extremely large values decays slowly, meaning that
large deviations from the mean are possible and occur with a non-
negligible probability. Although in many instances, a high shape
parameter (ξ ) induces the distribution to be more skewed to the
right (indicating high amplitudes), this does not surpass the thresh-
old due to frequent large amplitudes, as depicted in Fig. 6 by
blue dots and in the subplot representing the PDF of non-extreme
events for ε = 0.2. At certain coupling strengths, events that qual-
ify with a minimum positive shape parameter (ξ ) induce extreme
events by exceeding the threshold value, depicted in Fig. 6 by red
dots and in the subplot representing the PDF of extreme events
for ε = 0.4.

The return period (or recurrence interval) for a general-
ized extreme value (GEV) distribution is the average interval of
time between occurrences of an events,44 which is calculated by
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FIG. 5. The phase diagram constructed with initial conditions xh(0) vs transient
time, using the finite-time Lyapunov exponent. In the periodic regime (gray color),
the Lyapunov exponents have negative values. In the chaotic region (red color),
the Lyapunov exponents have positive values.

RP = 1
1−p(xpeak)

, where p(xpeak) is the empirical cumulative distribu-

tion function that represents the probability that a value is less than
or equal to xpeak. In Fig. 7, the return period is plotted for the TEE
parameters of the central hub oscillator with threshold (Hs) as the
dashed horizontal line. From Fig. 7, it is evident that extreme events
exceeding the threshold Hs have a long return period ranging from
200 to 6250, with the very low probability (1/RP) of occurrence
of events between 0.005 and 1.6 × 10−4. This indicates the rarity
and infrequency of such occurrences, confirming the presence of
extreme events in the network.

FIG. 6. The generalized extreme value distribution shape parameter ξ as a func-
tion of coupling strength ε is illustrated. Non-extreme events are shown in the
blue color, while extreme events are depicted in the red color. The corresponding
probability distribution function (PDF) is displayed in the subplots.

FIG. 7. The return period plot based on the generalized extreme value (GEV)
distribution is shown, with the threshold marked by a vertical dashed line.

D. Average synchronization error

To study the synchronization of the network, the average syn-
chronization error between the hub and the peripheral nodes of the
network is measured, 〈E〉 ∈ [0, 1] defined by

〈E〉 =
1

T(N − 1)

N
∑

j>1

∫ t+T

t

||xj − x1|| dt′,

where vector norm ||x|| =
√

x2 + y2, a value of the average syn-
chronization error (〈E〉) equal to zero indicates no synchronization
error, implying perfect or complete synchronization (CS) among the
oscillators. Conversely, positive values of 〈E〉 indicate that the cen-
tral oscillator is out of synchronization with the rest of the network
oscillators.

Additionally, focus on the scenario where the peripheral nodes
synchronize into a single cluster while the hub remains separate,
forming its own distinct cluster. This phenomenon, known as
remote synchronization (RS),16 occurs when two or more nodes
synchronize not through direct connections but via intermediate
nodes. We introduce an additional measure to account for this situ-
ation. The average synchronization error for among peripheral 〈Ep〉

is measured by

〈Ep〉 =
1

T(N − 1)

N
∑

j>2

∫ t+T

t

||xj − x2|| dt′.

Hence, for our system, the average synchronization error 〈E〉 is
calculated for both the transient and asymptotic states, which are
shown in blue and red colors, respectively, as depicted in Fig. 8.
The coherence among the peripheral nodes 〈Ep〉 is depicted in the
green color. Figure 8 illustrates the average synchronization error
(〈E〉) across different coupling strengths (ε). These measurements
have been computed from the numerical integration of system (1)
using the parameter configuration for TEEs described in Sec. III A.
From Fig. 8(a), it is clear that there is no notable difference in
synchronization error between both the transient and asymptotic
states of the network. The average synchronization error among the
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FIG. 8. Panel shows (a) the average synchronization error 〈E〉 for transient state
depicted in the blue color and asymptotic state depicted in the red color. The aver-
age synchronization error of peripheral nodes 〈Ep〉, shown in the green color. The
black rectangular box indicates the regime of transient extreme events (TEEs).
(b) The average synchronization error 〈E〉 for a random set of initial conditions
with subplots for remote synchronization (RS), complete synchronization (CS).

peripheral nodes suggests that the peripheral nodes are synchro-
nized independently from the hub at weak coupling of ε ∈ [0, 0.145],
a phenomenon denoted as remote synchronization (RS).

At strong coupling of ε ∈ [0.6733, 1], the network achieves
complete synchronization (CS), as confirmed by the zero average
synchronization error between the hub and peripherals depicted
in blue color. In addition to understanding the synchronization
dependence on initial conditions, we calculated the average syn-
chronization error 〈E〉 for ten random sets of initial conditions, as
shown in Fig. 8(b). The dark black color line indicates the calculated
average of 〈E〉. It is evident that for any chosen initial conditions,
the system exhibits remote synchronization at weak coupling and
complete synchronization at strong coupling, as illustrated by the
corresponding time series are shown as subplots in Fig. 8(b), with
the hub depicted in the blue color and the peripheral nodes in the
red color.

E. Energy function calculation

A mathematical framework to derive an energy function for
chaotic systems, drawing upon the Hamiltonian formalism, is pro-
posed by Sarasola et al.45 In this formalism, the Hamiltonian func-
tion serves as an energy function for conservative systems, encapsu-
lating the system’s dynamics through its variables in phase space.
For dissipative chaotic systems, where energy dissipation occurs,
the dynamics are expressed as a sum comprising a skew-symmetric
Poisson bracket and a symmetric bracket, termed the generalized
Hamiltonian formalism. In general theory, in a dissipative dynam-
ical system, energy is not conserved over time. This means that the
total amount of energy in the system decreases due to dissipation
or energy transfer. Therefore, in this section, the energy of our pro-
posed network is calculated with respect to coupling coefficient and
to explore how the energy transfers to one system to another system
as well as the cumulative energy flows of the network. The velocity
vector field f(x) of an dissipative autonomous dynamical system can
be separated into two distinct components,

f(x) = fc(x) + fd(x),

where fc is a divergence-free vector field responsible for the complete
rotational tensor and fd is a gradient vector field carrying the entirety
of whole divergence. The change in the system’s energy along a tra-
jectory is solely attributable to the contribution from fd; the energy
is dissipated, passively or actively, due to the divergent component
of the velocity vector field, Thus, it obeys the relation

∇HT fd(x) = Ḣ. (2)

For each dynamical system, there exists a partial differential
equation from which the energy function H(x) can be determined
by

∇HT fc(x) = 0. (3)

A solution H which is satisfied by Eq. (3) of the system equation (1)
represented by the non-definite quadratic form,

H = y1 −
bx2

1

2a
+

N
∑

m=2

ym

N − 1
−

bx2
m

2a(N − 1)
,

in accordance with Eq. (2), the rate of change of Hamilton energy
along a trajectory of the system (1) is

Ḣ =
bx3

1y1 − bx2
1 − b2x2

1

a
+ x2

1y1 +

N
∑

m=2

bx3
mym − bx2

m − b2x2
m

a(N + 1)

+
x2

mym

(N + 1)
.

These energy calculations are very useful for examining the
changes in average Hamilton energy within a network. We eval-
uated the total mean Hamilton energy for a range of coupling
strengths ε, from 0 to 1, while keeping other system parameters
constant as used for TEEs. The calculated results are shown in Fig.
9, where the cumulative energy of all oscillators is represented by
the green line. The red and blue lines represent in subsets showing
how the energy of the central hub and one peripheral node change,
respectively.
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FIG. 9. The cumulative average Hamiltonian energy 〈H〉 of the network as a func-
tion of coupling strength ε. Here, the subplot indicates the average Hamiltonian
energy of the central hub and peripheral node (n = 2) depicted in red and blue
colors, respectively.

In Fig. 9, we can see that when the coupling strength (ε) is low,
the cumulative energy (H) remains constant and evolves linearly due
to remote synchronization. However, there is a sudden change in
energy when the coupling strength ranges from ε ∈ (0.19, 0.62) and
the system transitions into a chaotic state. These abrupt changes in
the transition of cumulative energy indicate that there is an exchange
of energy between the hub and its peripherals. The network exhibits
chaotic oscillations. During this range of coupling strength (ε), the
system displays a variety of complex dynamics such as extreme
events, generalized synchronization, transient chaos, and more. Fur-
thermore, under strong coupling (ε ∈ (0.62, 1.0)), the total energy
remains stable, and the individual oscillator energies of the hub and
peripherals are synchronized. This is illustrated in the subplot of
Fig. 9 and indicates perfect or complete synchronization (CS) in the
system.

By analyzing the energy diagram, we observed that at the cou-
pling parameter value ε = 0.67 (marked by the vertical dotted line),
the system undergoes a transition from a desynchronized chaotic
state to a synchronized periodic state. During this transition period,
the system exhibits typical transient chaos before establishing a
strong coupling that leads to a synchronized periodic regime. This
transient chaos exhibits extreme events within it and is characterized
as transient extreme events (TEEs). Further to check the robustness
of extreme events (EEs) and transient extreme events (TEEs) in net-
works of different sizes, we plotted the spatiotemporal pattern of
a network with N = 100 oscillators, which exhibits extreme events
in all oscillators. This is depicted in Fig. 10, where the black gra-
dient color indicates the large amplitude of extreme events (EEs)
in the network, as qualified by the threshold from the respective
temporal data. Additionally, the top panel of Fig. 10 shows the tem-
poral plot for a peripheral node, chosen as node index n = 64 as an
example, with the threshold line indicated. Additionally, we plot-
ted the two-parameter diagram in the parameter space of (ε, N) for

FIG. 10. The top panel displays the temporal plot of xh for node index n = 64
in a network of N = 100 oscillators, with the threshold indicated by a horizontal
line, while the bottom panel depicts the spatiotemporal pattern of a network with
N = 100 oscillators. The dark black gradient color indicates the large amplitude
of EEs in the network.

ε ranging from 0 to 1 and network sizes chosen in the range of
N = 3–15 oscillators, as shown in Fig. 11. This diagram distin-
guishes the periodic and chaotic states using the largest Lyapunov
exponent, with periodic states depicted in gray color and chaotic
states (non-extreme events) in green color and extreme events were
classified based on a threshold value Hs. Additionally, to differen-
tiate between transient extreme events (TEEs) and typical extreme
events (EEs), we performed calculations for both the transient and
asymptotic states, with TEEs shown in blue color and EEs in red
color. From Fig. 11, similar results are observed as depicted in
Figs. 2 and 8, the system exhibits a periodic state in both weak
and strong coupling regimes and displays transient extreme events
(TEEs) before achieving complete synchronization.

IV. POSSIBLE APPLICATION

We have discussed some possible applications based on our
results. In particular, our results on TEEs support some perspec-
tives of applications for researchers and policymakers in various
fields of domain. For instance, the integration of renewable energy
sources into the power grid can also introduce transient power fluc-
tuations, which may manifest as extreme events and transient.29

Understanding and predicting these TEEs can be crucial for devel-
oping strategies to mitigate their impact, thereby improving the
overall reliability and robustness of power grids.

Understanding the mechanisms behind long transients and
their implications for forecasting is now a key challenge in both the-
oretical and empirical ecology. The identification of mechanisms
that drive these transients, along with an understanding of the
scaling laws governing their lifetimes could significantly enhance
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FIG. 11. The two-parameter diagram in the parameter space of (ε,N) illustrates
the dynamical behavior of the network across a range of oscillators, fromN = 3 to
15. Blue points represent the parameter values where TEEs exist, red points indi-
cate the existence of EEs, green color points denote non-extreme events (chaotic
states), and gray color points signify periodic states.

the accuracy of long-term forecasting and improve crisis anticipa-
tion. The study of transient extreme events (TEEs) offers a valuable
perspective for addressing these challenges. By examining the mech-
anisms underlying long transients within ecosystems,46 researchers
can develop a unifying theory that integrates both physical and eco-
logical insights. The application of TEEs in ecological contexts holds
the potential to bridge gaps in current research and paves the way for
advancements in the quantitative analysis of ecological transients.

On the other hand, the network of Brusselator provides a valu-
able framework for studying pattern formation, particularly through
the analysis of sudden expansions (extreme events) and transient
extreme events (TEEs). These phenomena offer insights into how
oscillatory behavior within the network can lead to the emergence of
spatial patterns, such as stripes or spots. Beyond chemical reactions,
the Brusselator model has been extended to study pattern formation
in other systems, including neural networks and ecological systems,
where similar mechanisms of diffusion and instability play crucial
roles. The application of the theoretical Brusselator star coupled net-
work to transient extreme events could involve studying how these
networks respond to sudden changes or perturbations, resulting in
extreme behaviors. This approach could provide valuable insights
into the mechanisms driving extreme events across various systems.

V. CONCLUSION

In this study, we observed the transition of a network from a
chaotic (unsynchronized) state to a periodic (synchronized) state
as the coupling strength was varied. During this transition, extreme
events (EEs) emerged in a chemical model configured in a star net-
work. Our analysis reveals that the proposed model exhibits complex
dynamics, including the occurrence of extreme events. Specifically,

we identified prolonged excursions of trajectories away from the
bounded attractor during the transient state, with chaotic attractors
displaying rare higher-amplitude events characterized as transient
extreme events (TEEs). To confirm the presence of extreme events
(EEs) and transient extreme events (TEEs), we determined a criti-
cal threshold through statistical methods. The dynamical transitions
of the attractors and the occurrence of transient extreme events
were analyzed using finite-time Lyapunov exponents. The observed
extreme events were further validated through statistical analyses,
including the probability distribution function, generalized extreme
value distribution, and return period plots, to ensure the rarity of
these events, and the transition to synchronization was confirmed by
measuring the average synchronization error. Additionally, we cal-
culated energy variations to verify the sudden expansions and transi-
tions within the network. This research sheds light on the conditions
under which extreme events can arise during prolonged transient
states, significantly enhancing our understanding of such events
in physical, engineering, and natural systems exhibiting transient
dynamics.
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